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We obtain a bound-state spectrum of low-energy excitations near the Fermi points of gapped graphene in the
presence of a charge impurity. The effects of possible short-range interactions induced by the impurity are
modeled by suitable boundary conditions. The spectrum in the subcritical region of the effective Coulomb
coupling is labeled by a parameter which characterizes the boundary conditions and determines the inequiva-
lent quantizations of the system. In the supercritical region we obtain a renormalization-group flow for the
effective Coulomb coupling.
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I. INTRODUCTION

Graphene monolayers consist of carbon atoms arranged in
a honeycomb lattice. In the neighborhood of Fermi points,
the low-energy excitations in graphene can be described by a
two-dimensional massless Dirac equation.1 The effects of
charge impurities in graphene have to be analyzed separately
in two regions: subcritical and supercritical, depending on
the strength of the Coulomb interaction. In the supercritical
region, where the effective Coulomb strength exceeds a cer-
tain critical value, the massless Dirac equation admits bound
states.2–5 In the subcritical region this does not happen,
which is a manifestation of the Klein paradox.

If the exact honeycomb lattice symmetry in graphene is
partially broken, possibly due to the presence of an impurity,
a Dirac mass for the excitations can be generated. The effect
of a charge impurity in gapped graphene with massive Dirac
excitations has been analyzed in Refs. 6–9 where it was as-
sumed that the impurity provides an axially symmetric Cou-
lomb interaction. It is expected that such an impurity may
also induce other short-range or singular interactions, such as
a delta function type potential. We have neither any detailed
knowledge of such interaction terms nor is it practical to
include them in the Dirac Hamiltonian, which is valid only in
the long-wavelength limit. We can however still model the
combined effect of these additional short-range interactions
on the long-wavelength dynamics through the choice of suit-
able boundary conditions.10

In this paper we shall analyze the effects of these bound-
ary conditions on the spectrum of the massive Dirac equation
in the presence of a charge impurity. This approach, where
self-adjointness is taken as the guiding principle for deter-
mining the allowed boundary conditions, has been shown by
Jackiw11 to yield a reliable description of singular potential
such as a delta function. For instance, application of this
approach to singular short-range interactions has led to the
possibility of bound states in fermionic12–16 and anyonic
systems,17,18 molecular physics,10 and integrable models.19,20

This technique is particularly relevant for systems having

scaling interactions,21–24 a property present in the screening
effect of the Coulomb potential in graphene.25–29 Moreover,
this approach has already been used to study certain topo-
logical defects in graphene.30,31 It is thus of interest to ex-
plore the physical effects of generalized boundary conditions
in gapped graphene with a Coulomb charge impurity.

It should be noted that the analysis of the bound states in
Refs. 6 and 7 assumes that the wave functions vanish at the
location of the impurity, whereas we only require square in-
tegrability for the wave functions. The boundary conditions
that are consistent with this requirement introduce an extra
parameter, which has physical implications. In particular, the
result for the spectrum obtained here is in general different
from that obtained in Refs. 6 and 7 The parameter which
appears in the boundary condition characterizes the inequiva-
lent sectors of the quantum theory. The appropriate theoreti-
cal description for graphene in the presence of a charge im-
purity can be settled experimentally, possibly through the
scanning tunneling microscopy �STM� measurements of the
local density of states �LDOS�.

It is generally believed that the long-wavelength Dirac
description is not applicable to graphene in the supercritical
region, where the Dirac vacuum is expected to break down.7

However certain features of the system may still be captured
by the continuum description. For instance, numerical2 as
well as semiclassical analyses4 of the supercritical region in
the massless case exhibits a large number of bound states in
graphene. An analytical prediction of these bound states can
be obtained from the continuum massless Dirac description.5

Here we shall apply the Dirac picture to the supercritical
region with a cutoff comparable to the lattice spacing. We
propose a renormalization-group analysis by keeping the ob-
servables fixed as a function of the cutoff11,32 to evaluate the
corresponding � function. An alternative regularization
scheme for analyzing supercritical charge impurities in
graphene with a mass gap has been discussed in Ref. 8. It is
not necessary to introduce such a cutoff in the subcritical
region as the excitation energies are low compared to the
inverse lattice scales.
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This paper is organized as follows. In Sec. II, we set up
the Dirac equation for the problem. In Sec. III we discuss the
generalized boundary conditions that follow from self-
adjointness. In Sec. IV we find the spectrum with these
boundary conditions. In Sec. V we discuss the spectrum in
the supercritical region and the associated renormalization-
group flow. We conclude the paper in Sec. VI.

II. DIRAC EQUATION

We start by considering the massive Dirac equation in a
gapped graphene monolayer in the presence of a charge im-
purity and use the same conventions as Novikov.7 The Dirac
operator can be written as

H = − i��1�x + �2�y� + m�3 + V�r� , �1�

where r is the radial coordinate on the two-dimensional x
−y plane, �i , i=1,2 ,3 are the Pauli matrices, and m denotes
the Dirac mass. We have chosen units such that the Fermi
velocity v=1 and Planck’s constant �=1. Using these con-
ventions, the Coulomb potential V�r� is given by

V�r� = −
�

r
, �2�

where we choose the impurity strength ��0, signifying an
attractive potential.25 In addition, we assume that the effect
of the charge impurity is such that it induces short range and
possibly singular potentials, such as a delta function, whose
detailed nature is not relevant. In our approach, we assume
that the combined effect of these short range and possibly
singular potentials can be modeled by imposing suitable
boundary conditions on the wave function.

The Dirac operator �1� satisfies the eigenvalue equation,

H� = E� , �3�

where E is the eigenvalue and

��r,�� = � �1�r�	k���
i�2�r�	k+1���

�, 	k��� =
1

�2

eik�, k � Z .

�4�

Here �1�r� and �2�r� denote the radial part of the wave func-
tion and � denotes the angle in the x−y plane.

In this paper we focus on the bound states of the Dirac
Eq. �3�, which satisfy �E��m. Consider the ansatz

�1��� = �m + Ee−�/2�−�1/2��1��� , �5�

�2��� = �m − Ee−�/2�−�1/2��2��� , �6�

where �=2�r, �=�m2−E2, =�j2−�2, and j=k+ 1
2 . In this

section we shall deal with the subcritical region of the Cou-
lomb potential, which is given by �� j for any j. Since the
lowest value of j= 1

2 , in the subcritical region the effective
Coulomb strength must satisfy ��

1
2 . Furthermore, in terms

of the variables P ,Q defined by

�1 = P + Q, �2 = P − Q , �7�

we get the equations

H��P

Q
� =��

d

d�
+  −

�E

�
− j +

m�

�

− j −
m�

�
�

d

d�
+  − � +

�E

�
��P

Q
� = 0,

�8�

in which H� defined above denotes the radial Dirac operator.
These sets of equations can be decoupled to give

�
d2P

d�2 + �1 + 2 − ��
dP

d�
− � −

�E

�
�P = 0, �9�

�
d2Q

d�2 + �1 + 2 − ��
dQ

d�
− �1 +  −

�E

�
�Q = 0. �10�

Thus we see that the functions P and Q satisfy the confluent
hypergeometric equation.33 This equation has two linearly
independent solutions, one of which is regular at the origin
�denoted by M� while the other is regular at infinity �denoted
by U�. In Ref. 7, the boundary conditions were so chosen
that the solutions were regular at the origin, which led to the
wave functions

�1��� = �m + Ee−�/2�−�1/2�	� j +
m�


�M� −

�E

�
,1 + 2,��

+ � −
�E

�
�M�1 +  −

�E

�
,1 + 2,��
 , �11�

�2��� = �m − Ee−�/2�−�1/2�	� j +
m�


�M� −

�E

�
,1 + 2,��

− � −
�E

�
�M�1 +  −

�E

�
,1 + 2,��
 . �12�

The corresponding bound-state spectrum was obtained in
Refs. 6 and 7 as

Ep,j =
m sgn���

�1 +
�2

�p + �2

, �13�

with p=0,1 ,2 , . . ., for j�0 and p=1,2 ,3 , . . . , for j�0. In
Sec. III we shall see that more general boundary conditions
are possible which are consistent with all the requirements of
quantum mechanics, leading to a different spectrum for the
same Dirac operator.

III. GENERALIZED BOUNDARY CONDITIONS

In the usual description of quantum mechanics, it is as-
sumed that the Hamiltonian is self-adjoint34 so that the time
evolution is unitary and the probabilities are conserved. In
addition, for the bound states, the solutions should be square
integrable. In our search for the generalized boundary condi-
tions, we shall be guided by these principles as formulated
by von Neumann.34

The Dirac operator H in Eq. �3� consists of a radial and an
angular part. The domain Y��� on which the angular part of
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H acts is spanned by the periodic functions 	k��� ,k�Z in
Eq. �4�. In what follows, we shall leave the angular wave
functions and the corresponding boundary conditions un-
changed.

The radial part of the Dirac operator H is given by H� in
Eq. �8�. It is symmetric �or Hermitian� in the domain
D0�H��=C0

��R+� consisting of infinitely differentiable func-
tions of compact support in the half line R+. The correspond-
ing adjoint operator is denoted by H�

†, which, as a differential
operator, has the same expression as H� in Eq. �8� although
its domain could be different.

The domain D0�H� of the full Dirac operator H is there-
fore given by D0�H�=C0

��R+� � Y���. Its adjoint operator H†

has the same differential expression as H although its domain
could be different as well. Following von Neumann’s
approach34 in order to determine whether the full Dirac op-
erator H is self-adjoint in its domain D0�H�, we consider the
equation

H†�� = � i��. �14�

Let n+�n−� be the total number of square integrable, linearly
independent solutions of Eq. �14� with the upper �lower� sign
in the right-hand side. The quantities n� are called the defi-
ciency indices of H. In order to determine n+�n−�, we con-
sider the radial Eq. �8� with E replaced by +i�−i�. This will
give the deficiency indices n� for H�. In terms of n�, H� can
be classified as follows:34 �1� H� is �essentially� self-adjoint
in D0�H�� if �n+ ,n−�= �0,0�. �2� H� is not self-adjoint in
D0�H�� but admits self-adjoint extensions if n+=n−=n�say�
�0. �3� H� has no self-adjoint extensions if n+�n−.

In order to find the deficiency indices n� for H�, we need
to solve for P� and Q� from the equations,

�
d2P�

d�2 + �1 + 2 − ��
dP�

d�
− � �

�i

��
�P� = 0, �15�

�
d2Q�

d�2 + �1 + 2 − ��
dQ�

d�
− �1 +  �

�i

��
�Q� = 0,

�16�

which are obtained from Eqs. �9� and �10� with E replaced
everywhere with �i and where ��=�M2+1. The solutions
we seek are such that when we reconstruct

�1� = P� + Q�, �2� = P� − Q�, �17�

and subsequently obtain

�1� = �m � ie−�/2�−�1/2��1���� , �18�

�2� = �m � ie−�/2�−�1/2��2���� , �19�

the functions �1� and �2� would be square integrable on R+

with a measure of �d�.
We now proceed to find n+. In this case, a possible set of

solutions of Eqs. �15� and �16� are given by

P+ = U� −
i�

�+
,1 + 2,�� , �20�

Q+ = U�1 +  −
i�

�+
,1 + 2,�� , �21�

where U denotes a confluent hypergeometric function.33 As
�→�,

P+ → �−+�i�/�+�, �22�

Q+ → �−1−+i��/�+�. �23�

Using Eqs. �17�–�19�, �22�, and �23� we find that, as �→�,
�1+ ,�2+→0. Hence the functions �1+ ,�2+ are square inte-
grable at infinity.

Let us now consider the behavior of these functions as
�→0. For this we shall use the formula33

U�a,b,z� =



sin 
b
	 M�a,b,z�

��1 + a − b���b�

− z1−b M�1 + a − b,2 − b,z�
��a���2 − b� 
 , �24�

where, as �→0, M�a ,b ,z�→1. Using Eqs. �20� and �24� we
see that as �→0,

P+ → a�A+ − B+�−2� , �25�

Q+ → a�C+ − D+�−2� , �26�

where a= 

sin 
�1+2� . Moreover

A+ =
1

��−  − i�
�+

���1 + 2�
B+ =

1

�� − i�
�+

���1 − 2�
,

�27�

C+ =
1

��1 −  − i�
�+

���1 + 2�
D+ =

1

��1 +  − i�
�+

���1 − 2�

�28�

are constants depending on the system parameters. From the
above relations we find that as �→0,

� ��1+�2�d� →� �c1�2 + c2 + c3�−2�d� , �29�

� ��2+�2�d� →� �d1�2 + d2 + d3�−2�d� , �30�

where ci ,di , i=1,2 ,3 are constants whose explicit forms are
not relevant. Recall that =�j2−�2 and that, in the subcriti-
cal region, �� j. Hence  is a real positive quantity in the
subcritical region. Then, from Eqs. �29� and �30� we find that
�1+ ,�2+ are square integrable at the origin provided �

1
2 .

Thus we arrive at the conclusion that the functions �1+ ,�2+

are square integrable everywhere provided that 0��
1
2 . Al-

ternately we can say that the deficiency index n+=1 when
0��

1
2 . A similar analysis shows that, for this same range

of , n−=1 as well. We have thus shown that, when 0
��j2−�2�

1
2 , the massive Dirac operator for graphene in

the subcritical region of the effective Coulomb coupling is
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not self-adjoint in D0�H�� but admits a one-parameter family
of self-adjoint extensions.

IV. INEQUIVALENT SPECTRA

We would now like to find the spectrum of the system in
the range of j and the effective subcritical Coulomb strength
� such that 0�=�j2−�2�

1
2 , where the Dirac operator ad-

mits a one-parameter family of self-adjoint extensions. The
deficiency subspaces for the radial Dirac operator H� are
spanned by the elements,

�� = ��1�

�2�
� = ��m � ie−�/2�−�1/2��P� + Q��

�m � ie−�/2�−�1/2��P� − Q��
� . �31�

The domain in which the Dirac operator is self-adjoint is
then given by Dz�H��=D0�H�� � �c�eiz/2�++e−iz/2�−�, where

c is an arbitrary complex number and z�R mod 2
.34 Thus
we have a one-parameter family of self-adjoint extensions,
labeled by a real parameter z. For each choice of the param-
eter z, we have a domain of self-adjointness of the radial
Dirac operator defined by Dz�H��. An arbitrary element �z

�Dz�H�� can be written as

�z��1z

�2z
� = c��eiz/2�1+ + e−iz/2�1−�

�eiz/2�2+ + e−iz/2�2−�
� . �32�

We note that, as �→0,

��1z

�2z
� → c��m + ieiz/2�−�1/2��P+ + Q+� + �m − ie−iz/2�−�1/2��P− + Q−�

�m − ieiz/2�−�1/2��P+ − Q+� + �m + ie−iz/2�−�1/2��P− − Q−�
� , �33�

where P− and Q− denote the complex conjugates of P+ and
Q+ in Eqs. �25� and �26�, respectively.

We now proceed to find the spectrum of the system when
the boundary conditions are governed by the domain Dz�H��.
A solution of the physical eigenvalue problem can be written
as

� = N��m + Ee−�/2�−�1/2��P + Q�
�m − Ee−�/2�−�1/2��P − Q�

� , �34�

where the functions P and Q satisfy Eqs. �9� and �10�, re-
spectively, and N denotes the normalization. Solutions of
Eqs. �9� and �10� that are square integrable at infinity are
given by

P = U� −
�E

�
,1 + 2,�� , �35�

Q = U�1 +  −
�E

�
,1 + 2,�� . �36�

Using Eqs. �24�, �33�, and �34� we see that, in the limit as
�→0,

P → a�A − B�−2� , �37�

Q → a�C − D�−2� , �38�

where a= 

sin 
�1+2� and

A =
1

��−  −
E�

�
���1 + 2�

B =
1

�� −
E�

�
���1 − 2�

,

�39�

C =
1

��1 −  −
E�

�
���1 + 2�

D =
1

��1 +  −
E�

�
���1 − 2�

. �40�

Hence, as �→0,

� → aN� �m + E��A + C��−1/2 − �B + D��−−�1/2��
�m − E��A − C��−�1/2� − �B − D��−−�1/2��

� .

�41�

The physical solution � in Eq. �41� must belong to the
domain of self-adjointness given by Dz�H��. In fact, behavior
of the elements of the domain Dz�H�� determines the bound-
ary conditions for the system. If ��Dz�H��, then as �→0,
the coefficients of r−�1/2� and r−−�1/2� in Eqs. �33� and �41�
must match. Comparing such terms and defining �m+ i�A+
+C+�=�1ei�1 and �m+ i�B++D+�=�2ei�2, we obtain

� �2

1 + M2� A + C

B + D
=

�1 cos��1 +
z

2
�

�2 cos��2 +
z

2
� . �42�

Using Eqs. �39�, �40�, and �42� we get

KUMAR S. GUPTA AND SIDDHARTHA SEN PHYSICAL REVIEW B 78, 205429 �2008�

205429-4



f�E� � � �2

1 + M2� ��1 − 2���1 +  −
E�

�
��1 −  −

E�

�
�

��1 + 2���1 −  −
E�

�
��1 +  −

E�

�
�

=

�1 cos��1 +
z

2
�

�2 cos��2 +
z

2
� . �43�

Equation �43� determines the spectrum in terms of the
system parameters and the self-adjoint extension parameter
z. Each choice of z corresponds to a boundary condition
described by the domain Dz�H�� and leads to an inequivalent
quantum theory. It may be noted that the theory itself cannot
predict which choice of the self-adjoint extension parameter
will be realized in a given system and this parameter must be
determined empirically. Equation �43� in general cannot be
solved analytically. However, for the special choice of z=z1

such that �2+
z1

2 = 

2 , we have

 −
E�

�
= − n, n = 1,2,3, . . . . �44�

This leads to the spectrum �Eq. �13�� obtained by Khalilov
and Ho,6 and Novikov7 for 0��

1
2 . For another special

choice of z=z2 such that �1+
z2

2 = 

2 , we get

−  −
E�

�
= − n, n = 1,2,3, . . . . �45�

For a general choice of z, the spectrum can be obtained nu-
merically, an example of which is shown in Fig. 1. It may be
noted that, for a general choice of z, the spectrum we obtain
from Eq. �43� is very different from that in Eq. �13�, which
was obtained previously.6,7 The corresponding bound-state
wave functions �41� are square integrable but not necessarily
regular at the origin. This feature appears in graphene with
topological defects as well.30,31

V. SUPERCRITICAL REGION

The supercritical region is defined by the effective Cou-
lomb strength �2� j2 for any j. This implies that in the su-
percritical region ��

1
2 and =�j2−�2= � i� where ��R.

We now proceed to investigate the supercritical coupling re-
gion for the massive Dirac equation. A study of the massive
Dirac equation with a regularized Coulomb potential has
been discussed in Ref. 8. We shall focus on the excitations
satisfying E2�m2 and introduce a cutoff in the radial direc-
tion set by the lattice spacing in graphene. The cutoff re-
stricts our analysis to the region where the Dirac equation
holds. The corresponding eigenvalue problem is solved with
a hard-core boundary condition given by

��� = �0� = 0, �0 = 2r0� , �46�

where � is the two component wave function in the super-
critical region and r0 provides a cutoff in the radial direction.
In this case, the upper component �1��� in Eq. �5� has two
linearly independent solutions given by

���� = �m + Ee−�/2�i�−�1/2�M�i� −
�E

�
,1 + 2i�,�� ,

�47�

���� = �m + Ee−�/2�−i�−�1/2�M�− i� −
�E

�
,1 − 2i�,�� .

�48�

The general solution which satisfies the boundary condition
�46� can be written as

�1��� = ��������0� − �������0�� . �49�

As �→�, we get that

�1��� → �m + Ee�/2�−1/2� ��1 + 2i��

��i� −
�E

�
� ���0�

−
��1 − 2i��

��− i� −
�E

�
� ���0�� . �50�

In order for the wave function to be square integrable, the
quantity in the parenthesis on the right-hand side of Eq. �50�
must vanish. This gives the condition

��1 + 2i����− i� −
�E

�
�

��1 − 2i����i� −
�E

�
� =

���0�
���0�

. �51�

Equation �51� follows as an exact consequence of our analy-
sis. In order to gain some physical insight, we shall now use
several approximations. The results derived below are there-
fore valid only in a qualitative fashion. First we assume that,
as the cutoff r0 approaches the lattice spacing, the hypergeo-
metric function M in Eqs. �47� and �48� can be replaced
approximately by 1. Strictly speaking this is true when the

0.90 0.92 0.94 0.96 0.98

�1000

�500

0

500

E

f�
E
�

FIG. 1. �Color online� A typical plot of f�E� in Eq. �43� with
m=1, j= 3

2 , and �=1.46. The horizontal line corresponds to the
right-hand side of Eq. �43�. It can be shifted up or down by chang-
ing the self-adjoint extension parameter z.
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cutoff tends to zero but it is a reasonable approximation in
the long-wavelength limit. Second, we assume that E2�m2.
In other words, we shall trust our results only for energy
scales below the Dirac mass. Using these assumptions in Eq.
�51�, we get

��− i� −
�E

�
�

��i� −
�E

�
� = e2i�� ln �0+��, �52�

where � is the argument of ��1−2i��. In order to proceed,
consider the energy scale such that E

m �1. In this case, the
left-hand side of Eq. �52� is approximately independent of E
and depends only on the system parameter �. Denoting the
argument of ��−i�� by �, we get

�p =
1

2r0
e�−�−2p
/�, �53�

where p�Z and �p=�m2−Ep
2. We can satisfy the require-

ment of E
m �1 by restricting p suitably. We now assume that

�, through its dependence on the effective Coulomb cou-
pling �, is a function of the cutoff r0. We keep Ep or equiva-
lently �p invariant as the cutoff is varied, which gives the �
function as

���� = − r0
d�

dr0
� − �2. �54�

We see that the coupling � admits an ultraviolet stable fixed
point at �=0 or equivalently at �= j for the angular-
momentum channel j, to which the system is expected to

flow.11,32 In particular, � tends to its critical value 1
2 for the

angular-momentum channel j= 1
2 .

VI. CONCLUSION

In this paper we have used the freedom to choose gener-
alized boundary conditions to model the effects of short-
range interactions introduced by impurities in gapped
graphene. We used this approach to investigate the supercriti-
cal and subcritical regions for the effective Coulomb charge.
For the subcritical region we found that the generalized
boundary conditions introduce a self-adjoint extension pa-
rameter z which labels the different inequivalent quantiza-
tions for 0��j2−�2�

1
2 . For a specific choice of z, the result

of Refs. 6 and 7 can be recovered. In general the spectrum
obtained is different. Thus an experimental approach for de-
termining the appropriate choice of the boundary conditions
labeled by z is in principle possible.

For the supercritical region, the analysis suggests a
renormalization-group flow �→ j for the jth angular-
momentum channel, where j is half integer. In particular, for
j= 1

2 , the effective Coulomb coupling tends to its critical
value �= 1

2 . This conclusion is valid in a very restricted re-
gion where E

m � ���.
In this paper we have considered only bound states. A

similar analysis for the scattering sector would be relevant.
In addition, the analysis of self-adjointness in bilayer
graphene with impurities35 would also be interesting.
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